
Quick Summary 
𝑚𝑢′′ + 𝛾𝑢′ + 𝑘𝑢 = 𝐹(𝑡) 

 

Case 1: F(t) = 0 and 𝛾 = 0  
 𝑢(𝑡) = 𝑐1 cos(𝜔0𝑡) + 𝑐2sin⁡(𝜔0𝑡) 

𝜔0 = √𝑘/𝑚⁡ = 𝒏𝒂𝒕𝒖𝒓𝒂𝒍⁡𝑓𝑟𝑒𝑞. 

 
Case 2: F(t) = 0 and 𝛾 > 0  

   2a: 𝛾 > 2√𝑚𝑘, overdamped 

   2b: 𝛾 = 2√𝑚𝑘, critically damped 

   2c: 𝛾 < 2√𝑚𝑘, damped vibrations 

𝑢(𝑡) = 𝑒𝜆𝑡(𝑐1 cos(𝜇𝑡) + 𝑐2sin⁡(𝜇𝑡)) 

𝜇 = √
𝑘

𝑚
−

𝛾2

4𝑚2 =⁡ quasi-frequency 

 
Case 3:⁡𝐹(𝑡) = 𝐹0 cos(𝜔𝑡) 𝑎𝑛𝑑 𝛾 = 0 
𝑢(𝑡) = 𝑐1 cos(𝜔0𝑡) + 𝑐2 sin(𝜔0𝑡) + 𝑢𝑝(𝑡) 

   3a: 𝜔 ≠ 𝜔0:  𝑢𝑝(𝑡) =
𝐹0

𝑚(𝜔0
2−𝜔2)

cos(𝜔𝑡) 

   3b: 𝜔 = 𝜔0: 𝑢𝑝(𝑡) =
𝐹0

2𝑚𝜔0
𝑡 sin(𝜔𝑡) 

   Resonance! 

 

Case 4: 𝐹(𝑡) = 𝐹0 cos(𝜔𝑡) 𝑎𝑛𝑑 𝛾 > 0 
Sol′n:⁡𝑢(𝑡) = 𝑢𝑐(𝑡) + 𝑢𝑝(𝑡) 

𝑢𝑐(𝑡) =homogeneous sol’n = transient sol’n 
𝑢𝑝(𝑡) =particular sol’n = steady state sol’n 

(also called forced response) 
 
We will discuss Case 4 today.   
Here is an example: 
Entry Task:  
m = 1 kg,  𝛾 = 2 N/(m/s), k = 5 N/m. 
External Forcing: F0 = 10 N, 𝜔 = 1 rad/s. 

1. Find the homogenous solution. 
2. Find a particular solution. 

 
 
 
 
 
 
 
 



The general solution to 
𝑢′′ + 2𝑢′ + 5𝑢 = 10cos⁡(𝑡) 

is 
u(t) =  

𝑒−𝑡(𝑐1 cos(2𝑡) + 𝑐2sin⁡(2𝑡)) + 2cos⁡(𝑡) + sin⁡(𝑡)  

 
If you are given initial conditions 
u(0) = 6 and u’(0) = -11,  
then you can find c1 = 4 and c2 = -6. 
Here is the graph of that solution: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example: Same problem as before with 
smaller damping: 
m = 1 kg,  𝛾 = 0.1 N/(m/s), k = 5 N/m. 
External Forcing: F0 = 10 N, 𝜔 = 1 rad/s. 

𝑢′′ + 0.1𝑢′ + 5𝑢 = 10cos⁡(𝑡) 

 
Solution: 

u(t) = 𝑒−0.05𝑡(𝑐1 cos(𝜇𝑡) + 𝑐2sin⁡(𝜇𝑡)) 
           ⁡⁡+⁡2.4984cos⁡(𝑡) + 0.0624sin⁡(𝑡)  
Here is the graph with c1 = 4 and c2 = -6. 
 

 
 

Some First Observations: 
1. When there is damping, there is a   

transient part of the solution that always 
dies out. 

2. If damping is smaller, it takes longer to 
die out. 

3. The amplitude of the steady state 

solution is dependent on m, 𝛾, k, and F0 
in some way. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Consider the example 

𝑢′′ + 𝛾𝑢′ + 5𝑢 = 10cos⁡(𝜔𝑡) 
 
Homogenous Solution:  
The characteristic equation is 
𝑟2 + 𝛾𝑟 + 5 = 0  

𝑟 = ⁡−
𝛾

2
±

1

2
√𝛾2 − 20  

If 𝛾 < √20, then 

    𝜇 =
1

2
√20 − 𝛾2 = √5 −

𝛾2

4
 

    Note: 𝑤0 = √5 
 
Particular Solution: 
Using:  𝑢𝑝(𝑡) = 𝐴cos(𝜔𝑡)+𝐵sin(𝜔𝑡) 

we get 
(5 − 𝜔2)𝐴 + ⁡𝛾𝜔𝐵 = 10 

−𝛾𝜔𝐴 + (5 − 𝜔2)𝐵 = 0 
 
 
 
 

𝐴 = ⁡
10(5 − 𝜔2)

𝜔4 + (𝛾2 − 10)𝜔2 + 25
 

𝐵 = ⁡
10𝛾𝜔

𝜔4 + (𝛾2 − 10)𝜔2 + 25
 

as you can see it starts to get messy. 
 
Let’s look at the case when  

𝜔 = √5 

then A = 0 and 𝐵 =
10𝛾√5

25+(𝛾2−10)5+25
=

2√5

𝛾
 

𝑢𝑝(𝑡) =
2√5

𝛾
sin(√5𝑡) 

When 𝛾 = 0.1, you get 

 
 



𝑢′′ + 𝛾𝑢′ + 5𝑢 = 10cos⁡(√5⁡𝑡) 

Steady state solution: 

𝑢𝑝(𝑡) =
2√5

𝛾
sin(√5⁡𝑡) 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Some Second Observations: 
1. If the forcing frequency is close to the 

natural frequency, then tend to get large 
amplitude solutions. 

2. In this case, the amplitude gets larger and 
larger the closer the damping is to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝛾 R 

10 0.447 

1 4.47 

0.1 44.72 

0.01 447.21 

0.001 4472.14 



General Discussion 

𝑚𝑢′′ + 𝛾𝑢′ + 𝑘𝑢 = 𝐹0⁡cos⁡(𝜔𝑡) 

Note: 𝜔0 = √
𝑘

𝑚
⁡ , 𝜇 = √

𝑘

𝑚
−

𝛾2

4𝑚2⁡ 

Particular Solution: 

𝑢𝑝(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵sin⁡(𝜔𝑡) 

Leads to 

−𝛾𝜔𝐴 + (𝑘 −𝑚𝜔2)𝐵 = 0 

(𝑘 − 𝑚𝜔2)𝐴 + 𝛾𝜔𝐵 = F0 

The formulas for A and B are large to 

write out. 

The amplitude of the steady state 

solution simplifies to: 

𝑅 = ⁡√𝐴2 + 𝐵2  =
𝐹0

√(𝑘−𝑚𝜔2)2+𝛾2𝜔2
 

 

Thinking of this as a function of 𝜔 the 

maximum steady state amplitude 

occurs when: 

  𝜔𝑚𝑎𝑥 = √
𝑘

𝑚
−

𝛾2

2𝑚2 

 
In particular, for small values of 𝛾 

if 𝜔 ≈ 𝜔0, then 𝑅 ≈ ⁡
𝐹0

𝛾𝜔
 is large.  

(resonance) 

 
 
 


