Quick Summary Case4: F(t) = Fycos(wt)andy >0
mu' + yu' + ku = F(t) Sol'n: u(t) = uc(t) + up(t)
Case 1: F(t)=0and y = 0 u.(t) =hom‘ogeneou’s sol’n = transient sczl n
u,(t) =particular sol'n = steady state sol'n

u(t) = ¢; cos(wot) + csin(wot) (also called forced response)

wo =+ k/m = natural freq.

We will discuss Case 4 today.
Case 2:F(t)=0andy >0

Here is an example:

2a: y > 2v/mk, overdamped Entry Task:
2b: y = 2v/mk, critically damped m=1kg, ¥ =2N/(m/s), k=5N/m.
2c: ¥ < 2v/mk, damped vibrations External Forcing: Fo=10 N, w = 1 rad/s.
u(t) = e’“(cl cos(ut) + c,sin(ut)) 1.Find the homogenous solution.
k2 . 2.Find a particular solution.
U= \/E — oz = quasi-frequency

Case3: F(t) = Fycos(wt)andy =0
u(t) = ¢y cos(wot) + ¢, sin(wot) + u,(t)
Fo
m(w3—w?2)

Fo .
P~ t sin(wt)

3a: w #F wo: Uy(t) = cos(wt)

3b: w = wp: up(t) =

Resonance!



The general solution to
u" + 2u’ + 5u = 10cos(t)
IS
u(t) =
e t(cq cos(2t) + c,sin(2t)) + 2cos(t) + sin(t)

If you are given initial conditions
u(0) =6 and u’(0) = -11,

then you can find ¢; =4 and ¢, = -6.
Here is the graph of that solution:
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Example: Same problem as before with ~ Some First Observations:

smaller damping: 1. When there is damping, there is a
m=1kg, y=0.1N/(m/s), k=5 N/m. transient part of the solution that always
External Forcing: Fo=10 N, w = 1 rad/s. diesout. |
W'+ 0.1u’ + 5u = 10cos(t) 2.1f damping is smaller, it takes longer to
' die out.

3. The amplitude of the steady state
solution is dependent on m, ¥, k, and Fg
in some way.

Solution:
u(t) = e %95 (¢, cos(ut) + cysin(ut))
+ 2.4984cos(t) + 0.0624sin(t)
Here is the graph with ¢; =4 and ¢, = -6.
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Consider the example
u"” + yu' + 5u = 10cos(wt)

Homogenous Solution:
The characteristic equation is
ré+yr+5=0

_ _Y 1 o
r=-—Jx3 Jy2 =20

If y < V20, then

_1 — 2 — _r
,u—z\/ZO ve=o—7
Note:w0=\/§

Particular Solution:
Using: u,(t) = A cos(wt) + Bsin(wt)
we get
(5—w?)A+ ywB =10
—ywA + (5 — w?)B =0

A=

B =

dS you Can see it starts to get messy.

10(5 — w?)

wt + (y? —10)w? + 25
10yw

w4+ (y? —10)w? + 25

Let’s look at the case when

thenA=0and B =

w =15
10yV5 _2V5
25+(y2 10)5425 vy

u,(t) = —sm(\/—t)

Wheny = 0.1, you get
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u' +yu +5u= 1OCOS(\/§ t) Some Second Observations:
1. If the forcing frequency is close to the

Steady state solution: natural frequency, then tend to get large
2\/5 : 2 ?nmtiliisucj:gs(?esc’)c:\u:;)r:ms.Iitude ets larger and
Up (t) - 7 Sm(\/g t) | larger the c’loser th:dampiig is togzero.
14 R
10 0.447
1 4.47
0.1 44.72
0.01 447.21
0.001 4472.14




General Discussion

mu'’ + yu' + ku = F, cos(wt)

: _ |k _ |k ¥
Note.a)o—\/;,,u—\/m py

Particular Solution:
U, (t) = Acos(wt) + Bsin(wt)

Leads to
—ywA + (k —mw?)B =0
(k —mw?)A +ywB =F,

The formulas for A and B are large to
write out.

The amplitude of the steady state
solution simplifies to:

R= VA% +B? = 0

- J(k—mw?)2+y2w?

Thinking of this as a function of w the
maximum steady state amplitude
occurs when:

_ |k y?
Wmax = ;_Zmz

In particular, for small values of y

. Fo .
if w =~ wy, thenR ~ y—;’) is large.

(resonance)



