Quick Summary

$$mu'' + \gamma u' + ku = F(t)$$

Case 1: F(t) = 0 and
$$\gamma = 0$$

 $u(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t)$
 $\omega_0 = \sqrt{k/m} = natural freq.$

Case 2: F(t) = 0 and
$$\gamma > 0$$

2a: $\gamma > 2\sqrt{mk}$, **overdamped**
2b: $\gamma = 2\sqrt{mk}$, **critically damped**
2c: $\gamma < 2\sqrt{mk}$, **damped vibrations**
 $u(t) = e^{\lambda t} (c_1 \cos(\mu t) + c_2 \sin(\mu t))$
 $\mu = \sqrt{\frac{k}{m} - \frac{\gamma^2}{4m^2}} =$ **quasi**-frequency

Case 4: $F(t) = F_0 \cos(\omega t)$ and $\gamma > 0$ Sol'n: $u(t) = u_c(t) + u_p(t)$ $u_c(t)$ =homogeneous sol'n = transient sol'n $u_p(t)$ =particular sol'n = steady state sol'n (also called forced response)

We will discuss Case 4 today.
Here is an example:
Entry Task:
m = 1 kg, γ = 2 N/(m/s), k = 5 N/m.
External Forcing: F₀ = 10 N, ω = 1 rad/s.
1.Find the homogenous solution.
2.Find a particular solution.

Case 3: $F(t) = F_0 \cos(\omega t)$ and $\gamma = 0$ $u(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + u_p(t)$ **3a**: $\omega \neq \omega_0$: $u_p(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos(\omega t)$ **3b**: $\omega = \omega_0$: $u_p(t) = \frac{F_0}{2m\omega_0} t \sin(\omega t)$ Resonance!

```
The general solution to

u'' + 2u' + 5u = 10\cos(t)

is

u(t) =

e^{-t}(c_1\cos(2t) + c_2\sin(2t)) + 2\cos(t) + \sin(t)
```


Example: Same problem as before with smaller damping:

m = 1 kg, γ = 0.1 N/(m/s), k = 5 N/m. External Forcing: F₀ = 10 N, ω = 1 rad/s. $u'' + 0.1u' + 5u = 10\cos(t)$

Solution:

 $u(t) = e^{-0.05t} (c_1 \cos(\mu t) + c_2 \sin(\mu t))$ $+ 2.4984 \cos(t) + 0.0624 \sin(t)$ Here is the graph with c₁ = 4 and c₂ = -6.

Some First Observations:

- 1. When there is damping, there is a *transient* part of the solution that always dies out.
- 2. If damping is smaller, it takes longer to die out.
- 3. The amplitude of the steady state solution is dependent on m, γ , k, and F₀ in some way.

Consider the example

 $u'' + \gamma u' + 5u = 10\cos(\omega t)$

Homogenous Solution: The characteristic equation is $r^2 + \gamma r + 5 = 0$ $r = -\frac{\gamma}{2} \pm \frac{1}{2}\sqrt{\gamma^2 - 20}$ If $\gamma < \sqrt{20}$, then $\mu = \frac{1}{2}\sqrt{20 - \gamma^2} = \sqrt{5 - \frac{\gamma^2}{4}}$ Note: $w_0 = \sqrt{5}$

Particular Solution: Using: $u_p(t) = A\cos(\omega t) + B\sin(\omega t)$ we get

$$\begin{array}{l} (5-\omega^2)A+\gamma\omega B=10\\ -\gamma\omega A+(5-\omega^2)B=0 \end{array}$$

$$A = \frac{10(5 - \omega^2)}{\omega^4 + (\gamma^2 - 10)\omega^2 + 25}$$
$$B = \frac{10\gamma\omega}{\omega^4 + (\gamma^2 - 10)\omega^2 + 25}$$

as you can see it starts to get messy.

Let's look at the case when $\omega = \sqrt{5}$ then A = 0 and B = $\frac{10\gamma\sqrt{5}}{25+(\gamma^2-10)5+25} = \frac{2\sqrt{5}}{\gamma}$ $u_p(t) = \frac{2\sqrt{5}}{\nu} \sin(\sqrt{5}t)$ When $\gamma = 0.1$, you get

$$u'' + \gamma u' + 5u = 10\cos(\sqrt{5} t)$$

Steady state solution:

$$u_p(t) = \frac{2\sqrt{5}}{\gamma} \sin(\sqrt{5} t)$$

γ	R
10	0.447
1	4.47
0.1	44.72
0.01	447.21
0.001	4472.14

Some Second Observations:

- 1. If the forcing frequency is close to the natural frequency, then tend to get large amplitude solutions.
- 2. In this case, the amplitude gets larger and larger the closer the damping is to zero.

General Discussion

$$mu'' + \gamma u' + ku = F_0 \cos(\omega t)$$

Note:
$$\omega_0 = \sqrt{\frac{k}{m}}$$
 , $\mu = \sqrt{\frac{k}{m} - \frac{\gamma^2}{4m^2}}$

Particular Solution:

 $u_p(t) = A\cos(\omega t) + B\sin(\omega t)$

Leads to

$$-\gamma \omega A + (k - m\omega^2)B = 0$$
$$(k - m\omega^2)A + \gamma \omega B = F_0$$

The formulas for A and B are large to write out.

The amplitude of the steady state solution simplifies to:

$$R = \sqrt{A^{2} + B^{2}} = \frac{F_{0}}{\sqrt{(k - m\omega^{2})^{2} + \gamma^{2}\omega^{2}}}$$

Thinking of this as a function of ω the maximum steady state amplitude occurs when:

$$\omega_{max} = \sqrt{\frac{k}{m} - \frac{\gamma^2}{2m^2}}$$

In particular, for small values of γ if $\omega \approx \omega_0$, then $R \approx \frac{F_0}{\gamma \omega}$ is large. (resonance)